53 research outputs found

    Analyse de modèles géométriques d'assemblages pour les structures et les enrichir avec des informations fonctionnelles

    No full text
    The digital mock-up (DMU) of a product has taken a central position in the product development process (PDP). It provides the geometric reference of the product assembly, as it defines the shape of each individual component, as well as the way components are put together. However, observations show that this geometric model is no more than a conventional representation of what the real product is. Additionally, and because of its pivotal role, the DMU is more and more required to provide information beyond mere geometry to be used in different stages of the PDP. An increasingly urging demand is functional information at different levels of the geometric representation of the assembly. This information is shown to be essential in phases such as geometric pre-processing for finite element analysis (FEA) purposes. In this work, an automated method is put forward that enriches a geometric model, which is the product DMU, with function information needed for FEA preparations. To this end, the initial geometry is restructured at different levels according to functional annotation needs. Prevailing industrial practices and representation conventions are taken into account in order to functionally interpret the pure geometric model that provides a start point to the proposed method.La maquette numérique d'un produit occupe une position centrale dans le processus de développement de produit. Elle est utilisée comme représentation de référence des produits, en définissant la forme géométrique de chaque composant, ainsi que les représentations simplifiées des liaisons entre composants. Toutefois, les observations montrent que ce modèle géométrique n'est qu'une représentation simplifiée du produit réel. De plus, et grâce à son rôle clé, la maquette numérique est de plus en plus utilisée pour structurer les informations non-géométriques qui sont ensuite utilisées dans diverses étapes du processus de développement de produits. Une demande importante est d'accéder aux informations fonctionnelles à différents niveaux de la représentation géométrique d'un assemblage. Ces informations fonctionnelles s'avèrent essentielles pour préparer des analyses éléments finis. Dans ce travail, nous proposons une méthode automatisée afin d'enrichir le modèle géométrique extrait d'une maquette numérique avec les informations fonctionnelles nécessaires pour la préparation d'un modèle de simulation par éléments finis. Les pratiques industrielles et les représentations géométriques simplifiées sont prises en compte lors de l'interprétation d'un modèle purement géométrique qui constitue le point de départ de la méthode proposée

    Functional restructuring of CAD models for FEA purposes

    Get PDF
    International audienceDigital Mock-ups (DMUs) are widespread and stand as reference model for product description. However, DMUs produced by industrial CAD systems essentially contain geometric models and their exploitation often requires user's input data to derive finite element models (FEMs). Here, analysis and reasoning approaches are developed to automatically enrich DMUs with functional and kinematic properties. Indeed, geometric interfaces between components form a key starting point to analyse their behaviours under reference states. This is a first stage in a reasoning process to progressively identify mechanical, kinematic as well as functional properties of the components. Inferred semantics adds up to the pure geometric representation provided by a DMU and produce also geometrically structured components and assemblies. Functional information connected to a structured geometric model of a component significantly improves the preparation of FEMs and increases its robustness because idealizations can take place using components' functions and components' structure helps defining sub-domains of FEMs

    Deriving Functional Properties of Components from the Analysis of Digital Mock-ups

    Get PDF
    International audienceDigital Mock-ups (DMUs) are widespread and form a common basis for product description. However, DMUs produced by industrial CAD systems essentially contain geometric models and their exploitation often requires new input data to derive various simulation models. In this work, analysis and reasoning approaches are developed to automatically enrich DMUs with functional and kinematic properties. Indeed, interfaces between components form a key starting point to analyze their behaviours under operational reference states. This is a first stage in a reasoning process to progressively identify mechanical, kinematic as well as functional properties of the components. The overall process relying on the interfaces between components addresses also the emerging needs of conventional representations of components in industrial DMUs. Inferred semantics add up to the pure geometric representation provided by a DMU, to allow for easier exploitation of the model in different phases of a Product Development Process (PDP)

    Effect of Using and Preparing of Food on Diarrhea Disease for Children

    Get PDF
    Introduction: In Iraq diarrhea is the main cause for clinical presentation among under 5-years child population next to pneumonia and it's also more common in rural than in capital Baghdad. Method: A community based cross-sectional study was conducted in urban Baghdad Hospital Central for Children and in Al-Mohmmodia Hospital which was in rural city. Data were collected from the patient's record registration for each hospital (age, No. of child who is infected with diarrhea, Nutritional status, breast-feeding and water supply, and socio-economic status). Also, precoded questionnaires with sociodemographics, maternal and child characteristics, child feeding, and environmental conditions. Result: Total diarrhea percent under-10 years children in the urban capital Baghdad were lower than Baghdad's rural, that were 13.73 and 69.68 respectively. The difference in diarrhea percent among males and female for both hospitals was big and the difference was statically significant (p<0.01). Children in the age group less than one year had the higher prevalence of diarrhea to the extent of 51.16% in rural Al-Mohmmodia than capital Baghdad 14.34%, followed by the age 1 year and above had the lowest prevalence. The difference in the prevalence of diarrhea in different age groups was showed to be statically significant (p<0.01). Similarity, decreasing birth weight, immunization and vitamin A consumption, personal hygiene, overcrowding, garbage and exceta disposal, source of water, and caregiver status were found associated with increased diarrhea incidence (p<0.01). Conclusion: in this study the prevalence of diarrhea was higher in under-five children in rural Baghdad than capital Baghdad which was significantly associated with child's sex, child's age, maternal education level, and socio-economic parameter. Therefore, this study to show the differences between Baghdad city and its rural of diarrheal incidence in children less than 10 years, and to see which season effect diarrhea incidence more. The other objective is to find out association between certain risk factors and diarrhea among children less than 10 years. Keywords: Diarrhea- risk factors- nutrition status- stunting- parasites and bacterial infection.

    Template-based geometric transformations of a functionally enriched DMU into FE assembly models

    Get PDF
    International audiencePre-processing of CAD models derived from Digital Mock-Ups (DMUs) into finite element (FE) models is usually completed after many tedious tasks of model preparation and shape transformations. It is highly valuable for simulation engineers to automate time-consuming sequences of assembly preparation processes. Here, it is proposed to use an enriched DMU with geometric interfaces between components (contacts and interferences) and functional properties. Then, the key concept of template-based transformation can connect to assembly functions to locate consistent sets of components in the DMU. Subsequently, sets of shape transformations feed the template content to adapt components to FE requirements. To precisely monitor the friction areas and the mesh around bolts, the template creates sub-domains into their tightened components and preserves the consistency of geometric interfaces for the mesh generation purposes. From a user-selected assembly function, the method is able to robustly identify, locate and transform groups of components while preserving the consistency of the assembly needed for FE models. To enlarge the scope of the template in the assembly function taxonomy, it is shown how the concept of dependent function enforces the geometric and functional consistency of the transformed assembly. To demonstrate the proposed approach, a business oriented prototype processes bolted junctions of aeronautical structures

    The linkages between financial literacy and its application in financial decision-making among academicians in Indonesia

    Get PDF
    Purpose of the study: Financial literacy has become one of the important policies of the Indonesia government. The improvement of financial literacy is crucial for a more stable financial system and reduces financial fragility. Our research is to examine levels of financial literacy, to identify determinants of financial literacy and to investigate whether knowledge is followed by financial practices. Methodology: This study employs the survey method, which includes questionnaires sent to academicians in Indonesia. Multiple regression analysis (MRA)is used to empirically analyze the relationship between financial literacy and its application in financial decision-making. Main findings: The respondents are financially literate with the same level of financial literacy. Socio-demographic characteristics influence significantly the financial literacy and the capability in cash flow management of the respondents. Further, there is a linkage between the knowledge of financial products (financial literacy) and its application in financial decision-making. Application: It implies that the knowledge about the financial product is very important for creating a high financial literacy society. The Indonesia government needs to run more seriously one of the pillars in the National Strategy for Financial Inclusion through the Ministry of Education. Novelty: Most of the previous studies focused on conventional products, while this study includes both conventional and Islamic financial products. Further, we also consider the application of Islamic (shari’ah) financial practices. We investigate the impact of financial literacy with socio-demographic characteristics on its application in financial decision-making

    What is the content of a DMU? Analysis and proposal of improvements

    Get PDF
    1 p. - Session A3 Réalité virtuelle & Maquette numériqueNational audienceA Digital Mock-Up contains a set of component. What are the possible treatments that can be derived from this model? An analysis of the DMU content is performed to answer this question and show the lack of consistency in a DMU explaining the difficulties in performing automated treatments to derive technological and functional information about components. Then, a first set of proposals is described, aiming at improving the consistency of DMUs and making possible the automated treatments to derive functional information of components from conventional interfaces between components

    Qualitative behavioral reasoning from components' interfaces to components' functions for DMU adaption to FE analyses

    Get PDF
    International audienceA digital mock-up (DMU), with its B-Rep model of product components, is a standard industrial representation that lacks geometric information about interfaces between components. Component shapes reflect common engineering practices that influence component interfaces with interferences and not only contacts. The proposed approach builds upon relationships between function, behavior, and shape to derive functional information from the geometry of component interfaces. Among these concepts, the concept of behavior is more difficult to set up and connect to the geometry of interfaces and functions. Indeed, states and design rules are introduced to express the behavior of components through a qualitative reasoning process. This reasoning process, in turn, takes advantage of domain knowledge rules and facts, checking the validity of certain hypotheses that must hold true all along a specific state of the product's lifecycle, such as operational, stand-by or relaxed states. Eliminating configurations that contradict one or more of those hypotheses in their corresponding reference state reduces ambiguity, subsequently producing functional information in a bottom-up manner. This bottom-up process starts with the generation of a conventional interfaces graph (CIG) with components as nodes, and conventional interfaces (CIs) as arcs. A CI is initially defined by a geometric interaction that can be a contact or an interference between two components. CIs are then populated with functional interpretations (FIs) according to their geometric properties, producing potentially many combinations. A first step of the reasoning process, the validation against reference states, reduces the number of FIs per CI. Domain knowledge rules are then applied again to group semantics of component interfaces into one functional designation per component to connect together geometric entities of its boundary with its function

    Analyse de modèles géométriques d'assemblages pour les structures et les enrichir avec des informations fonctionnelles

    No full text
    The digital mock-up (DMU) of a product has taken a central position in the product development process (PDP). It provides the geometric reference of the product assembly, as it defines the shape of each individual component, as well as the way components are put together. However, observations show that this geometric model is no more than a conventional representation of what the real product is. Additionally, and because of its pivotal role, the DMU is more and more required to provide information beyond mere geometry to be used in different stages of the PDP. An increasingly urging demand is functional information at different levels of the geometric representation of the assembly. This information is shown to be essential in phases such as geometric pre-processing for finite element analysis (FEA) purposes. In this work, an automated method is put forward that enriches a geometric model, which is the product DMU, with function information needed for FEA preparations. To this end, the initial geometry is restructured at different levels according to functional annotation needs. Prevailing industrial practices and representation conventions are taken into account in order to functionally interpret the pure geometric model that provides a start point to the proposed method.La maquette numérique d'un produit occupe une position centrale dans le processus de développement de produit. Elle est utilisée comme représentation de référence des produits, en définissant la forme géométrique de chaque composant, ainsi que les représentations simplifiées des liaisons entre composants. Toutefois, les observations montrent que ce modèle géométrique n'est qu'une représentation simplifiée du produit réel. De plus, et grâce à son rôle clé, la maquette numérique est de plus en plus utilisée pour structurer les informations non-géométriques qui sont ensuite utilisées dans diverses étapes du processus de développement de produits. Une demande importante est d'accéder aux informations fonctionnelles à différents niveaux de la représentation géométrique d'un assemblage. Ces informations fonctionnelles s'avèrent essentielles pour préparer des analyses éléments finis. Dans ce travail, nous proposons une méthode automatisée afin d'enrichir le modèle géométrique extrait d'une maquette numérique avec les informations fonctionnelles nécessaires pour la préparation d'un modèle de simulation par éléments finis. Les pratiques industrielles et les représentations géométriques simplifiées sont prises en compte lors de l'interprétation d'un modèle purement géométrique qui constitue le point de départ de la méthode proposée

    REASONING ABOUT FUNCTIONAL PROPERTIES OF COMPONENTS BASED ON GEOMETRICAL DESCRIPTIONS

    No full text
    Digital Mock-ups (DMUs) are widespread and form a common basis for product description. However, DMUs produced by industrial CAD systems essentially contain geometric models and their exploitation often requires new input data to derive various simulation models. In this work, analysis and reasoning approaches are developed to automatically enrich DMUs with functional and kinematic properties. Indeed, interfaces between components form a key starting point to analyze their behaviours under operational reference states. This is a first stage in a reasoning process to progressively identify mechanical, kinematic as well as functional properties of the components. The overall process relying on the interfaces between components addresses also the emerging needs of conventional representations of components in industrial DMUs. Inferred semantics add up to the pure geometric representation provided by a DMU, to allow for easier exploitation of the model in different phases of a Product Development Process (PDP)
    • …
    corecore